Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins.
نویسندگان
چکیده
OBJECTIVE In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVo(2)) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS Oxygen consumption and cardiac function were determined in db/db hearts perfused with glucose or glucose and palmitate. Mitochondrial function was determined in saponin-permeabilized fibers and proton leak kinetics and H(2)O(2) generation determined in isolated mitochondria. RESULTS db/db hearts exhibited reduced cardiac function and increased MVo(2). Mitochondrial reactive oxygen species (ROS) generation and lipid and protein peroxidation products were increased. Mitochondrial proliferation was increased in db/db hearts, oxidative phosphorylation capacity was impaired, but H(2)O(2) production was increased. Mitochondria from db/db mice exhibited fatty acid-induced mitochondrial uncoupling that is inhibitable by GDP, suggesting that these changes are mediated by uncoupling proteins (UCPs). Mitochondrial uncoupling was not associated with an increase in UCP content, but fatty acid oxidation genes and expression of electron transfer flavoproteins were increased, whereas the content of the F1 alpha-subunit of ATP synthase was reduced. CONCLUSIONS These data demonstrate that mitochondrial uncoupling in the heart in obesity and diabetes is mediated by activation of UCPs independently of changes in expression levels. This likely occurs on the basis of increased delivery of reducing equivalents from beta-oxidation to the electron transport chain, which coupled with decreased oxidative phosphorylation capacity increases ROS production and lipid peroxidation.
منابع مشابه
Dual mode of action of metformin on mitochondrial metabolism
Metformin is commonly used in the treatment of diabetes, however recently there is increasing interest in “repurposing” the drug for cancer prevention or treatment. Metformin is believed to act by inhibiting mitochondrial complex I, leading to activation of AMPK. Interestingly, metformin treatment is not associated with the serious health consequences that are seen with classic inhibitors of co...
متن کاملDecreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart
Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...
متن کاملReduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity.
BACKGROUND Obesity is a risk factor for cardiovascular disease and is strongly associated with insulin resistance and type 2 diabetes. Recent studies in obese humans and animals demonstrated increased myocardial oxygen consumption (MVO2) and reduced cardiac efficiency (CE); however, the underlying mechanisms remain unclear. The present study was performed to determine whether mitochondrial dysf...
متن کاملAcute Stimulation of White Adipocyte Respiration by PKA-Induced Lipolysis
OBJECTIVE We examined the effect of β-adrenergic receptor (βAR) activation and cAMP-elevating agents on respiration and mitochondrial uncoupling in human adipocytes and probed the underlying molecular mechanisms. RESEARCH DESIGN AND METHODS Oxygen consumption rate (OCR, aerobic respiration) and extracellular acidification rate (ECAR, anaerobic respiration) were examined in response to isoprot...
متن کاملTHE EFFECT OF ENDURANCE EXERCISE ON THE CONTENT OF AMPK AND PGC-1Α PROTEINS IN THE LEFT VENTRICULAR HEART TISSUE OF RATS WITH TYPE 2 DIABETES
Background: One of the most important biological pathways involved in maintaining energy homeostasis is the AMPK PGC-1α pathway. Activation of this pathway through exercise can be important in regulating mitochondrial biogenesis processes and maintaining energy balance in diabetics. Therefore, the aim of this study was to investigate the effect of endurance exercise on the content of AMPK and P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 56 10 شماره
صفحات -
تاریخ انتشار 2007